Editorial
Need a hint? Checkout the editorial.
View Editorial
Editorial
Since $3^{x} +x^{4} =y!+2019 >2019$, we have $x\geq 6$.
Assume that $y\geq 6$, then $x^{4} \equiv 3\bmod 9$, impossible.
So we must have $y\leq 5$.
Find the sum of all positive intengers $x,y$,such like $[(x+y)]$ satisfying:
$$3^x+x^4=y!+2019.$$
Since $3^{x} +x^{4} =y!+2019 >2019$, we have $x\geq 6$.
Assume that $y\geq 6$, then $x^{4} \equiv 3\bmod 9$, impossible.
So we must have $y\leq 5$.