Easy Function


Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be  function such that $f(1)=23$ , $f(2)=12$ and for a constant  positive integer $k$
$f(x+k)+\frac{1}{f(x)}=2$. How many positive integers $n$ are there such that $f(n)$ is a positive integer?  


Function  


  4 Upvotes                    0 Downvotes

Editorial



Need a hint? Checkout the editorial.

View Editorial


Statistics



Attempt 21


Solve 15


First Solve ahasankabir146