Disclaimer: The solutions we've shared are just one exciting approach, and
there are surely many other wonderful methods out there. We’d love to hear
your alternative solutions in the community thread below, so let's keep the
creativity
flowing!
We divide the situations in 4 cases:
- $a = b = c = d$
- $a+1 = d, b = c$
- $a+1 < d, b = c$
- $a < d, b < c$.
Note: We didn't include $a = d, b < c$ because it's not possible
Case 1: $a = b = c = d$
In this case $X = 0$, $Y=0$. So, $X+Y=0$
Case 2: $a+1 = d, b = c$
Since $\overline{dcba} > \overline{abcd}$ and $a < d$, hence $X's$ units digit will be $a+10 - d = a + 10 - (a+1) = 9$
Since $b = c$, hence $X's$ tens digit will be $b + 10 - (c+1) = b + 10 - (b + 1) = 9$.
Similarly, $X's$ tens digit will be $c+10 - (b+1) = c + 10 - (c + 1) = 9$.
And then the thousands digit will be $d - (a+1) = 0$
So, $X = 999$ and $Y=999$ and $X+Y=1998$.
Case 3: $a+1 < d, b = c$
This time $X's$ units digit will be $a + 10 - d$.
Like $\textbf{Case 2}$, $X's$ tens digit and hundreds digit will be $9$.
Then $X's$ thousands digit will be $d - (a+1)$.
So $X=1000 \times (d - (a+1)) + 990 + (a + 10 - d)$
and $Y=1000 \times (a + 10 - d) + 990 + (d - (a + 1))$.
Therefore, $X+Y = 10989.$
Case 4: $a < d, b < c$
$X's$ units digit will be $(a + 10 - d)$
$X's$ tens digit will be $(b + 10 - (c+1)) = (b + 9 - c)$.
$X's$ hundreds digit will be $(c - (b + 1)) = (c - b - 1)$.
$X's$ thousands digit will be $(d - a)$.
So, $X= 1000\times (d-a) + 100\times (c - b - 1) + 10 \times (b + 9 -c) + (a + 10 - d)$
and $Y = 1000\times (a + 10 - d) + 100\times (b + 9 - c) + 10 \times (c - b - 1) + (d-a)$.
Therefore, $X+Y=10890$