You can view the solution by clicking on the solution tab.
Editorial
Need a hint? Checkout the editorial.
View Editorial
Editorial
Use cosine rule on all 4 sides.
In the quadrilateral $ABCD$, $AB^2 + CD^2 = BC^2 + AD^2$. Prove that the diagonals of the quadrilateral are perpendicular to each other.
Source: BdMO 2016 National Junior P4
Let the diagonals $AC,BD$ intersect at $E$.
Let $\theta = \angle AEB$ and $t=\cos\theta$. So, $\cos(180^\circ-\theta)=-\cos\theta=-t$.
Using the cosine rule:
$AB^2 = AE^2+BE^2-2AE\cdot BE\cdot \cos\theta=AE^2+BE^2-2AE\cdot BE\cdot t$
$CD^2 = CE^2+DE^2-2CE\cdot DE\cdot \cos\theta= CE^2+DE^2-2CE\cdot DE\cdot t$
$BC^2 = CE^2+BE^2-2BE\cdot CE\cdot \cos(180^\circ-\theta)= CE^2+BE^2+2BE\cdot CE\cdot t$
$AD^2 = AE^2+DE^2-2AE\cdot DE\cdot \cos(180^\circ-\theta)= AE^2+DE^2+2AE\cdot DE\cdot t$
$(1)+(2)-(3)-(4)\implies$
$AB^2+CD^2-AD^2-BC^2=-2AE\cdot BE\cdot t-2CE\cdot DE\cdot t-2BE\cdot CE\cdot t-2AE\cdot DE\cdot t$
$\implies 0 = -2t(AE\cdot BE+AE\cdot DE+CE\cdot BE+CE\cdot DE)$
$\implies t(AE+CE)(BE+DE)=0 $
$\implies t\cdot AC\cdot=0BD$
But $AC,BD$ cannot be $0$. So, $t=0\implies \cos\theta = 0\implies \theta = 90^\circ$
So, $AC$ and $BD$ are perpendicular to each other.
Cosine Rule
The cosine rule states that in a triangle $ABC$, $AB^2=AC^2+BC^2-2BC\cdot AC\cdot \cos \angle ACB$
Use cosine rule on all 4 sides.