Disclaimer: The solutions we've shared are just one exciting approach, and
there are surely many other wonderful methods out there. We’d love to hear
your alternative solutions in the community thread below, so let's keep the
creativity
flowing!
a)
No. For the sake of contradiction, assume that $3\mid n$ and $3\mid n-1$
So, $3\mid n-(n-1)\implies 3\mid 1$. Contradiction.
b)
The answer is $n=585$.
$1971=3^3\cdot 73$. So, $73\mid n^2\implies73\mid n$ or $73\mid n-1$.
$27\mid n^2\implies 9\mid n$ or $9\mid n-1$.
Case 1:
$73\mid n-1$ and $9\mid n$.
Let $n-1=k\cdot 73$.
$73\cdot k\equiv n-1 \equiv 8\pmod{9}$.
But, $73\equiv 1\pmod{9}$
So, $k\equiv 8\pmod9$. Let $k=9l+8$
But, for $l=0$, $n=585$ works.
Case 2:
$73\mid n$ and $27\mid n-1\implies 9\mid n-1$.
Let $n=k\cdot 73$.
$73\cdot k\equiv n\equiv (n-1)+1 \equiv 1\pmod{9}$.
But, $73\equiv 1\pmod{9}$
So, $k\equiv 1\pmod9$. Let $k=9l+1$
But, for $l=0$, $n=73$ does not work. For $l>0$, $n>10\cdot 73 = 730>585$.
Case 3: $73\mid n$ and $9\mid n$.
So, $9\cdot 73\mid n\implies n\geq 657>585$
Case 4: $73\mid n-1$ and $27\mid n-1$.
So, $27\cdot 73\mid n-1\implies n>n-1\geq 1971>585$
So, the answer 585 is proved.