This is a proof based problem added for learning purposes and does not accept submissions.
You can view the solution by clicking on the solution tab.
You can view the solution by clicking on the solution tab.
প্রমাণ কর, $a$, $b$, $c$ ধনাত্মক বাস্তব সংখ্যা হলে,
$\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab} \ge \frac{2}{a} + \frac{2}{b} - \frac{2}{c}$
Square of a real number is always non-negative. So,
$(a+b-c)^2 \geq 0$
$\implies a^2+b^2+c^2 +2ab-2bc-2ac \geq 0$
$\implies a^2+b^2+c^2 \geq 2bc + 2ac - 2ab$
$\implies \frac{1}{abc}(a^2+b^2+c^2) \geq \frac{1}{abc}(2bc + 2ac - 2ab)$
$\implies \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\geq \frac{2}{a}+\frac{2}{b}-\frac{2}{c}$