Unreal Real Numbers


$m, n$ এবং $p$ হল এমন বাস্তব সংখ্যা যেন $(m + n + p) \left(\frac{1}{m} + \frac{1}{n} + \frac{1}{p}\right) = 1$ হয়। 

$$\frac{1}{(m+n+p)^{2023}} - \frac{1}{m^{2023}} - \frac{1}{n^{2023}} - \frac{1}{p^{2023}}$$

এর সকল সম্ভাব্য মান নির্ণয় করো।


Proof Based Problems  


  0 Upvote                    0 Downvote


Solution

Disclaimer: The solutions we've shared are just one exciting approach, and there are surely many other wonderful methods out there. We’d love to hear your alternative solutions in the community thread below, so let's keep the creativity flowing!

$(m+n+p)(\frac{1}{m}+\frac{1}{n}+\frac{1}{p})=1$

$\implies \frac{1}{m}+\frac{1}{n}+\frac{1}{p}=\frac{1}{m+n+p}$

$\implies \frac{mn+mp+np}{mnp}=\frac{1}{m+n+p}$

$\implies (m+n+p)(mn+mp+nm)=mnp$

$\implies m^2n+mn^2+m^2p+mp^2+n^2p+np^2+3mnp=mnp$

$\implies m^2n+mn^2+m^2p+mp^2+n^2p+np^2+2mnp=0$

$\implies 3(m^2n+mn^2+m^2p+mp^2+n^2p+np^2)+6mnp=0$

$\implies (m+n+p)^3-m^3-n^3-p^3=0$

$\implies ((m+n+p)^3-m^3)-(n^3+p^3)=0$ 

$\implies (n+p)((n+p)^2 + m(n+p) +m^2) -(n+p)(n^2-np+p^2)=0$

$\implies (n+p)(m^2+n^2+p^2+2(mn+np+mp)+m^2+mn+mp+m^2-n^2+np-p^2)=0$

$\implies (n+p)(3m^2+3mn+3pn+3pm)=0$

$\implies (n+p)(m+p)(m+n)=0$


We can assume without loss of generality that

\[n+p=0\implies n=-p\]

Now, for the given term

\[\frac{1}{(m+(-p)+p)^{2023}}-\frac{1}{m^{2023}}-\frac{1}{(-p)^{2023}}-\frac{1}{p^{2023}}=\frac{1}{m^{2023}}-\frac{1}{m^{2023}}+\frac{1}{p^{2023}}-\frac{1}{p^{2023}}=0\]


So, the answer is 0.

This is a proof based problem added for learning purposes and does not accept submissions.

You can view the solution by clicking on the solution tab.

Editorial



Need a hint? Checkout the editorial.

View Editorial