Let $P(x) , A(x)$ and $Q(x)$ be three polynomials so that
$\sum_{i=0}^{n} A(x+i)=P(x^n)$ and $3Q(x^n)=Q(x^{n+2})+20+P(x^2)$ for all non-negetive integers $n$
Find the value of $P(1)+Q(2)+A(3) $