In $\triangle ABC$, $E$ & $M$ on $AB$, $G$ & $F$ on $BC$, $H$ & $N$ on $AC$ are such points where $MN \parallel BC$, $EF \parallel AC$, $GH \parallel AB$. $EF$, $GH$, $MN$ intersect at point $O$.
Given that $[MOE] = 4$, $[NOH] = 9$, $[GOF] = 49$. $[ABC] = ?$