Editorial
Need a hint? Checkout the editorial.
View Editorial
Editorial
Let $g(a)=a^3-6a^2+17a-18=(a-2)(a^2-4a+9)$ and $g(x)=-2, g(b)=2$.
Given that, $f(a)=a^3-6a^2+17a$. If $f(x)=16, f(y)=20$, then find the value of $x+y$.
Let $g(a)=a^3-6a^2+17a-18=(a-2)(a^2-4a+9)$ and $g(x)=-2, g(b)=2$.