Editorial
Need a hint? Checkout the editorial.
View Editorial
Editorial
- Just to use the Power of point theorem and easy trigonometric approach.
- Prove that, $\triangle NPQ \sim \triangle NOM$.
A circle passing through the points $M, O$ of $\triangle MNO$ intersects the sides $MN, NO$ at points $P, Q$ respectively. Let $\frac {NP}{OQ}=\frac {3}{2}$, $NQ=4, MP=5$ and $MO=2 \sqrt 7$. Determine $\angle NPO$.